
Chapter 5

Graphical modeling of structural VARs

5.1 The Structural VAR, SVAR

In this chapter we describe structural VAR models and how they can be con-
structed using the methods of graphical modeling. The form of the structural
VAR (SVAR) that we will use differs primarily from that of the canonical
VAR model by including regression terms for the dependence between current
variables in addition to dependence of current on past variables. These terms
explain any correlation between the innovations of the canonical VAR so that
the residual series, or structural model innovations, from the SVAR model
will be uncorrelated with each other. Our aim is also that structural models
be sparse, in the sense that they represent the dependence using a relatively
small number of model terms or coefficients. It is reasonable to believe that
in a model that reflects the true structure of a system of inter-related series,
the current value of each series should depend on a relatively small number
of other current and lagged values.

Identifiability is a major concern with structural models. For the canonical
VAR model, it was necessary only to identify the order to identify a unique
model. Structural modeling in econometrics has traditionally relied strongly
on economic theory to specify the terms in the model, with constraints to en-
sure that it can be uniquely identified. This is because there are many possible
structural models which could equally well represent the observable statistical
properties of the time series. However, our approach to the identification of
structural VAR models is largely empirical; we would use contextual informa-
tion where available and relevant to help guide us to an appropriate model,
but our procedure is mainly to use appropriate statistics to identify the sparse
structure of a well-fitting model. It is based on the theory of graphical model-
ing, and the statistics it uses are the partial correlations between current and
lagged values of the series.

5.2 The directed acyclic graph, DAG

It is natural to represent causal relationships among variables in a diagram-
matic manner using directed graphs in which an arrow links each variable to
the others which it affects causally. The books by Whittaker (1990), Lauritzen
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130 GRAPHICAL MODELING OF STRUCTURAL VARS

(1996) and Edwards (2000) provide accessible accounts of general statistical
modeling procedures that are based on these representations of dependence.
This topic has been an extremely active subject of research in recent years,
but we limit ourselves to considering the specific application to structural
modeling of multivariate time series. An application in this area which makes
reference to the wider literature is found in Awokuse and Bessler (2003).

The canonical VAR, presented in the previous chapter, models the current
observations of the multivariate series at time t through the dependence on
previous (lagged) observations of the time series themselves. A visually effec-
tive way to present this model for a set of three series is by the graph in Figure
5.1, where each of the six variables is a node.
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Figure 5.1 Graphical representation of a saturated canonical VAR(1).

In a VAR model, all current variables at time t, e.g., x1,t, x2,t and x3,t,
depend on all past variables: in the case of a VAR(1), the variables at time
t− 1. Such dependence in the graph is represented by the arrows or directed
edges linking the nodes representing current and past variables, where the
direction is suggested by the flow of time. We can simply indicate this com-
plete dependence on the past by saying that the VAR is saturated on past
variables. As discussed in the previous chapter and as is apparent from the
graph, in the VAR there are no terms describing dependence between current
variables and, because of that, typically the innovations are correlated. The
dependence between the innovations in the VAR reflects the conditioning of
the current variables upon all the past variables. Including explicit terms for
the dependence between current variables provides an alternative way to cap-
ture the dependence between innovations. We use as an initial example the
monthly Flour price series shown in Figure 1.2, for which the criteria AIC,
HQC and SIC all selected an order 2 autoregression. The series were of si-
multaneous prices in the three cities of Buffalo, Minneapolis and Kansas City,
and it is unsurprising that the innovations from the canonical VAR(2) were
highly correlated, as shown by their correlation matrix:




1.0000 0.9664 0.8700
0.9664 1.0000 0.8976
0.8700 0.8976 1.0000




By a structural VAR (SVAR) we will therefore mean a multivariate time
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series model of the form

Φ0xt = Φ1xt−1 +Φ2xt−2 + · · ·+Φpxt−p + at, (5.1)

where in contrast to the (canonical) VAR, the non-singular matrix Φ0 has rows
by which current values of the elements of xt are related, and the elements of
the residuals at are assumed to be uncorrelated. It is immediate that every
model of the form (5.1) can be transformed to a canonical VAR by dividing
through by Φ0, i.e.,

xt = Φ−1

0 Φ1xt−1 +Φ−1

0 Φ2xt−2 + · · ·+Φ−1

0 Φpxt−p +Φ−1

0 at (5.2)

= Φ∗1xt−1 +Φ∗2xt−2 + · · ·+Φ∗pxt−p + et. (5.3)

The result is known as the reduced form VAR (Lütkepohl, 1993, pp. 54, 325).
The residuals at of the SVAR are therefore related to the innovations et of the
VAR, and the general covariance matrix V of et to the diagonal covariance
matrix D of at, by

Φ0et = at (5.4)

Φ0V Φ′0 = D. (5.5)

Although any given SVAR determines a unique corresponding VAR re-
duced form, there are many SVAR models that correspond to a given VAR,
resulting from the possible choices of Φ0 that diagonalize V in (5.5). It is
therefore our hope that the sparse parameterization of the SVAR will help us
to identify just one, or possibly a small number of these, which can adequately
represent the structure of the series. Note that, because the transformation
(5.2) from the SVAR to the VAR depends on the inverse of Φ0, a sparse SVAR
is likely to have a reduced form VAR with much less sparse coefficient matrices.
However, the inverse of the innovation covariance matrix is V −1 = Φ′0D

−1Φ0,
which will reflect in part any sparse aspects of Φ0. This is actually a special
case of a property arising in the general theory of graphical modeling which
we will shortly introduce and apply to the identification of SVAR models.

The word structural, as we use it for the SVAR (5.1), has a meaning some-
what distinct from its original use for a structural model in econometrics
(Hurwitz, 1962). In that context a structural model should be able to predict
the effects of interventions which are of the nature of changes in a variable or
parameter. In fact, our SVAR has the form of a simultaneous equation model ;
see Zellner and Theil (1962). We will refer to this as a SimEM, because the
abbreviation SEM is generally used for the wider class of structural equation
models.

In the general SimEM, the elements of at are not explicitly required to be
uncorrelated, but the model is only generally identifiable if a large number
of constraints are imposed on the coefficients, typically zero values. Without
these constraints, many different sets of parameters would equally well rep-
resent the observable statistical properties of the data. The dependencies are
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suggested by theoretical considerations underpinning the analyzed system of
equations and are not empirically identified. For example, Zellner and Theil
(1962) model the current relationships between six economic variables by us-
ing economic theory.

For our SVAR model we have assumed that the elements of at are uncor-
related, i.e., the covariance matrix D of at is diagonal, otherwise the model
would certainly not be identifiable. However, we will also assume that

• each row of Φ0 describes how one element of xt depends on some (if any)
of the other current elements;

• this dependence is recursive, not cyclical. This means that we could re-
order the elements of xt so that Φ0 is upper triangular with unit diagonals:
each element in turn depends on none, one or more elements that are lower
in the ordering, taking the first as the highest. The ordering need not be
unique; indeed, if there were no dependence at all, the ordering could be
arbitrary.

The dependence between variables in an SVAR is conveniently illustrated by
the sparse SVAR shown in Figure 5.2. We contrast this with the saturated
VAR in the graph in Figure 5.1, noting that it includes directed edges linking
current variables. The number of coefficients in this SVAR is the number,
8, of links, whereas the VAR in Figure 5.1 has 12 coefficients, including the
3 correlation coefficients between current variables, which are not explicit in
the figure. These correlations are modeled in the SVAR by the links between
current variables.

3,tx x x

x xx1,t−1 2,t−1 3,t−1

2,t1,t

Figure 5.2 An example of a graph representing a sparse SVAR(1).

The resulting graph should be acyclic, i.e., it should not have any cyclic
dependence between current variables. The graph in Figure 5.3 gives an ex-
ample of the cyclic dependence that we exclude: it is possible by following the
arrows from one variable eventually to return to the same variable; thus x1,t

affects x3,t, which affects x2,t, which affects x1,t.

x1,t 2,t 3,tx x

Figure 5.3 A graph representing cyclic dependence.
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The diagram representing the SVAR, such as that in Figure 5.2, consisting
of nodes with directed edges, is an example of a directed acyclic graph (DAG).
Nodes (or their associated variables) that have a directed edge leading to a
given node are known as the parents of that node, and the node itself as their
child . Thus, in Figure 5.2, x2,t−1, x3,t−1 and x3,t are the parents of x2,t. In
general, a DAG completely determines the distribution of a set of variables,
given, for each node, its distribution conditional upon its parents. Because we
are assuming the normal linear model, this means that the linear regression of
each current variable upon its parents fully determines the properties of the
multivariate time series xt. As we will see in Section 5.6, it also greatly sim-
plifies the estimation of the model, allowing the use of ordinary least squares
separately for the regression equation of each current variable. It is essential
for this purpose that the graph be acyclic. However, we do reconsider in Sec-
tion 5.9 the possibility of describing the dependence between current variables
using a simultaneous equation model, for which an acyclic directed graph is
not an appropriate description.

To confirm that the SVAR represented by a DAG does completely deter-
mine the series properties, consider starting at some initial time t0 with a
given set of values (say zeros) for the past variables xt0−1, . . . , xt0−p. Then xt

may be simulated using the regression equation for each component current
variable on other current and lagged values, provided this is carried out in the
order determined by the DAG. For the SVAR illustrated in Figure 5.2, x3,t is
first generated from x2,t−1 and x3,t−1, then x2,t from x2,t−1, x3,t−1 and x3,t

and finally x1,t from x1,t−1, x2,t−1, x3,t−1 and x3,t. In this case it does not
matter in which order x1,t and x2,t are generated, only that an acyclic order-
ing exists. Successive values xt0 , xt0+1, xt0+2, . . . may be determined in this
way, and, provided the reduced form of the model is stationary, the process
so generated will reach the stationary equilibrium. This thought experiment
also draws attention to the fact that the DAG as exemplified in Figure 5.2 is
partial. To be complete, the same edges between the current components of xt

should also be shown between the components of xt−1, and also the compo-
nent variables of xt−2 should be shown as predictive for xt−1. This extension
could be continued indefinitely into the past and the future, but, of course, it
is not necessary to do so. The DAG showing only the links between current
variables and from lagged to current variables is sufficient for a process model
that is stationary or invariant to a time shift.

The key to constructing an SVAR with a sparse structure that adequately
represents the observed series is the determination of the (or an) ordering of
the dependence of current variables using appropriate statistical summaries
of the data. The theory of graphical models assists us once more; in the next
section we describe how to estimate a conditional independence graph which
can enable us to achieve this aim. To conclude this section, we remark that
a saturated SVAR model is one which, for the chosen ordering of current
variables, has no sparse structure, i.e., each current variable is regressed upon
all those current variables that are lower in the ordering, and on all the lagged
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values up to the specified order. Such a model is exactly equivalent to the
saturated VAR model, so it confers no advantage over the VAR, and any one
such model is equivalent to any other based upon a different ordering of the
current variables.

5.3 The conditional independence graph, CIG

We introduce this section by developing a DAG model for the dependence
between the innovations of a multivariate time series, using the Flour prices
as an example. Given that we have identified the order of a VAR model for the
series and estimated its parameters, the innovations are effectively observable
(subject to some sampling variability of the parameter estimates). We will
go on to show how this can be extended to a DAG representing an SVAR
model for the Flour prices themselves. This strategy is possible because, given
a DAG representation of a multivariate times series xt, such as illustrated in
Figure 5.2, the innovations et from a canonical VAR fitted to the series can be
described by a DAG having the subgraph restricted to the current variables.
We are simply conditioning on all the lagged values; it is not necessary to know
which lagged values are actually linked to current values. Figure 5.4 shows the
subgraph of Figure 5.2 to illustrate this point, which we will shortly apply to
the Flour price series.

3,t
e e e
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Figure 5.4 The DAG representing the innovations of the SVAR(1) described by the
DAG in Figure 5.2.

In Section 5.1 we displayed the correlation matrix between the innovations
of the Flour price series. We noted that the innovations were all highly corre-
lated, suggesting that any one series of innovations can be predicted from the
others. However, it is often the case with highly correlated sets of variables
that some variables do not make a significant contribution to a prediction in
the presence of other predictors, although they are correlated with the pre-
dicted variable. Taking each variable in turn as the predicted or response, and
taking all the other variables together as predictors, we can determine which
are relevant in the presence of all the others and, just as important, which are
not. A graph may then be constructed in which the nodes (as for a DAG) cor-
respond to the set of variables, and any two nodes (variables) are connected by
an edge only if the first variable is dependent on the second when all the other
variables are also included as predictors. In the general context of graphical
modeling, we say that the edge between two nodes is absent if and only if
the corresponding pair of variables are independent conditional upon all the

remaining variables in the set . The resulting graph is then called a conditional

independence graph (CIG). We note that the edges are not directed because by
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this definition the relationship between two nodes is symmetric, even though
we introduced the idea by considering one variable as predicted and the other
as one of a set of predictors. The CIG clearly represents structure of the vari-
ables that differs from that specified in a DAG, but we will see how it can
be used to draw conclusions about possible DAG representations by exploit-
ing the conditional independence property. Most important, it can be directly
estimated from the data, with no requirement to specify an ordering of the
variables.

In our context of the normal linear model, the conditional independence
graph is fully determined by the covariance matrix V of the variables (or by its
correlation matrix). In order to construct the CIG from this matrix, it is not
necessary to determine the linear predictor of each variable in turn, from all the
others, though in principle this could be done. The conditional independence
between two normal variables, given the remainder, is determined by their
partial correlation being zero.

We introduced partial correlations in Section 2.9. In a system of several
variables, the partial correlation between two of them is just their correlation
once the linear dependence of each of them on the remaining variables has been
subtracted. This definition extends to non-normal variables, but it is conve-
nient to retain the notation of multivariate normality where subtracting the
linear dependence on other variables is equivalent to conditioning upon them.
More formally, given a set of random variables X = X1, . . . , Xn, the partial
correlation π(Xi, Xj) between two random variables Xi and Xj included in
X is given by

π(Xi, Xj) = ρ(Xi, Xj | X \ {Xi, Xj}), (5.6)

where X \ {Xi, Xj} is the set of all variables except Xi and Xj. We have the
following connection with prediction, that in the minimum mean square error
linear predictor of Xi from X \ Xi, the coefficient of Xj is zero if and only
if π(Xi, Xj) = 0 and symmetrically the coefficient of Xi is zero in predicting
Xj .

As previously presented in Section 2.9, for a set of random variables X =
X1, . . . , Xn with covariance matrix V=Var(X), we can directly construct the
whole matrix of partial correlations as

π(Xi, Xj) =
−Wi,j√
Wi,iWj,j

, (5.7)

where Wi,j are the elements of the matrix W = V −1.
We can represent a summary of all the non-zero partial correlations by

a diagram in which the nodes representing the random variables are linked
if their partial correlation is different from zero. Such a diagram is called
a partial correlation graph. If the variables are normally distributed, a zero
partial correlation corresponds to conditional independence, i.e.,

π(Xi, Xj) = 0⇔ Xi ⊥ Xj | X \ {Xi, Xj}, (5.8)



136 GRAPHICAL MODELING OF STRUCTURAL VARS

and in such a case the diagram is also the conditional independence graph
(CIG). Figure 5.5 shows the CIG that we identify below for the Flour price
series innovations. The implications of the CIG for determining a DAG rep-
resentation of the dependence between the variables will be considered in the
next section. The important point is that we can estimate the CIG using the
sample partial correlation matrix between the variables and identifying those
entries which, subject to sampling variability, may be judged to be zero.

We need then a test procedure to decide whether a non-zero partial correla-
tion can be considered to be zero. A large value for a sample partial correlation
suggests a non-zero partial correlation, so we need to determine critical values,
i.e., thresholds above which a value is to be considered significantly different
from zero, for a prescribed level of significance. The matrix of sample partial
correlations is readily constructed from the sample covariance matrix of the
data and the critical values for these are determined as follows:

1. Given a random sample of a set of normal random variables X =
{X1, . . . , Xm} with covariance matrix V , let the data matrix X consist
of columns of length n of the mean corrected samples of X . The sample
covariance matrix is then V̂ = 1

nX
′X. The sample inverse covariance ma-

trix is computed as Ŵ = V̂ −1 and by its entries, Ŵi,j , the sample partial
correlations can be calculated as

π̂(Xi, Xj) =
−Ŵi,j√
Ŵi,iŴj,j

. (5.9)

2. Under the hypothesis that π(Xi, Xj) = 0, the ratio

π̂(Xi, Xj)
√
n−m+ 1√

1− π̂(Xi, Xj)2
(5.10)

is distributed as a tn−m+1 variable where n−m+1 is the number of degrees
of freedom, because this ratio is the t-value of the estimate of the coefficient
βj in the regression

Xi = β1X1 + · · ·+ βi−1Xi−1 + βi+1Xi+1 + · · ·+ βmXm + ai (5.11)

of Xi on X \ {Xi}.
3. We reject the null hypothesis that π(Xi, Xj) = 0 at level α if

|π̂(Xi, Xj)| >
tα/2,n−m+1√

t2α/2,n−m+1
+ (n−m+ 1)

, (5.12)

where tα/2,n−m+1 is the corresponding critical value of the tn−m+1 distri-
bution.

The estimated CIG is then constructed with links between the nodes Xi
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and Xj only if this test is rejected. In large samples, say when n −m > 30,
(5.12) can be well approximated by

|π̂(Xi, Xj)| >
zα/2√

z2α/2 + (n−m+ 1)
, (5.13)

where z is the standard normal distribution.
In the graphical modeling literature, other tests for significance of partial

correlations are used. For example, Whittaker (1990, p. 189) considers a test
procedure based on the large sample properties of maximum likelihood esti-
mates which leads to the asymptotically equivalent large sample distribution

−n log[1− π̂(Xi, Xj)
2] ∼ χ2

1.

Tests like the ones described above strictly apply only to testing a single
partial correlation where the probability of making a type I error, i.e., of
wrongly concluding that a value is non-zero, is α. Because we test several
partial correlations simultaneously, we are in a multiple testing situation where
the probability of making at least one type I error is greater than α. Similarly,
the overall probability of making at least one type II error, of wrongly failing

to conclude that a value is non-zero, is greater than it would be for any single
test. In practice, we will use these tests to screen all the partial correlations to
identify a preliminary CIG structure. This is similar to the use of the partial
autocorrelation function for identifying the AR model order of a univariate
time series. The graphs so identified will be used to formulate models which
will then be fitted and tested rigorously. We have found that a good strategy
to cope with the problem of multiple testing in identifying a CIG is to consider
the presence of edges with different significance levels, e.g., 0.01, 0.05 and 0.1,
and to indicate these by the lines used in presenting the graph. The use of the
0.01 level reduces the overall type I error and that of the 0.1 level reduces the
overall type II error. A recent approach to controlling the error levels is given
by Drton and Perlman (2008).

The difference between a CIG and a partial correlation graph is due to the
assumption of normality of the set of variables X in the CIG. This gives the
presence of edges in a CIG the stronger meaning of conditional dependence
rather than partial correlation, as in the latter type of graph. However, from
the modeling point of view, they both give an indication of the explanatory
variables to include in a linear model: when the variables we are dealing with
are not Gaussian, the null hypothesis of the test is not independence but lack
of linear predictability.

To illustrate the construction of a CIG, let us consider the example of the
Flour price series innovations. The sample partial correlation matrix is

π̂ =




1.0000
0.8532 1.0000
0.0231 0.4483 1.0000






138 GRAPHICAL MODELING OF STRUCTURAL VARS

where the diagonal elements, corresponding to the partial correlations of each
variable with itself, are equal to 1 and where only the lower triangular part is
needed as the matrix is symmetric.

We can observe that π̂1,2, corresponding to the partial correlation of the
innovations of x1,t and x2,t, given the innovations of x3,t, is large (0.8532)
while π̂1,3 is small (0.0231). We can formally test which partial correlations
are significantly different from zero by using (5.13). There are three series
of innovations, indicated, respectively, as e1,t, e2,t and e3,t, and each one of
them has 98 observations, so n = 3 and m = 98. If we set the significance at
a level of α = 0.05, then z0.05/2 = 1.96, and we can set the threshold for the
significance of partial autocorrelations as

|π̂(Xi, Xj)| >
1.96√

1.962 + (98− 3 + 1)
= 0.196.

This confirms our initial impression that π̂1,2 is significantly different from zero
as 0.8532 > 0.196 while π̂1,3 is not, because 0.0231 < 0.196. The computed
threshold also indicates that π̂2,3 is significantly different from zero.

We could consider other levels of significance, e.g., α = 0.01 and α = 0.1
with corresponding threshold values |π̂(Xi, Xj)| > 0.254 and |π̂(Xi, Xj)| >
0.165. Hence both π̂1,2 and π̂2,3 are significant even at a 0.01 level of signifi-
cance, while π̂1,3 is not significant even at a 0.1 level of significance.

All this information is efficiently conveyed in the CIG, where we link vari-
ables with significant partial correlations, i.e., between et,1 and et,2 and be-
tween et,2 and et,3. In general, we will represent the strength of the significance
of the partial correlations by the thickness of the lines representing the edges,
so in this case we could indicate a strong partial correlation (significant at
α = 0.01) with a thick continuous line. We will indicate a mid-strength par-
tial correlation (significant at α = 0.05) with a continuous line and a weak
partial correlation (significant at α = 0.1) with a broken line. No link will ap-
pear for a partial correlation not significant at any of the levels α considered.

In this example, all the significant partial correlations are strong, and
consequently all the edges are represented by thick continuous lines. Figure
5.5 shows the resulting graph for the innovations of the Flour price series.
Because the three variables are all normal, the presence of edges indicates
conditional dependence among the variables and the graph is a CIG.

A note of caution should be attached to estimation of the CIG. The sig-
nificance of an estimated partial correlation is equivalent to that of a t-value

e e e1,t 2,t 3,t

Figure 5.5 Estimated conditional independence graph of the VAR(2) innovations of
the Flour price series.
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in a regression and can only be interpreted as indicating whether or not a
variable should be included, given the other variables in the model. If a vari-
able (equivalently a link in the CIG) is removed because of a low absolute
t-value and the regression re-fitted, the t-values of the coefficients of the re-
maining variables will in general change, possibly substantially if there is high
collinearity in the data. So a second variable with a relatively low absolute
t-value in the original regression may acquire a high absolute t-value when
the first is removed. This will be an important consideration when we come
to fitting the DAG structures that we identify on the basis of a CIG. Never-
theless, we will take the edges in the estimated CIG as a first indication of
the dependency within the set of variables considered. We will go on to model
these dependencies using regression equations described by a directed acyclic
graph. But having fitted a directed acyclic graph model, we will carry out
diagnostic correlation checks on the residuals, designed to detect inadequacy
in the model. So if we note significant correlation remaining, we will use this
to indicate possible extensions of the model with new edges. This approach
to modeling dependence is in the spirit of estimation and diagnostic checking
advocated by Box and Jenkins (1970).

In the next section, we illustrate how a CIG, such as shown in Figure 5.5,
enables us to draw conclusions about possible DAG representations of the
variables.

5.4 Interpretation of CIGs

In this section, we will restrict ourselves to the non-time series context of a
set of random variables such as observed time series innovations, for which
we have a complete CIG. We will show first how the information in a CIG
can in some examples help us to directly determine a DAG representation of
the variables. We then explain how, more generally, we can determine which
DAG representations are consistent with a given CIG, and so by exploring
these possibilities, find a suitable model.

We start with the example of the CIG in Figure 5.5 for which the predictive
interpretations of the graph may be set out explicitly. Consider in turn the
interpretation for e1,t, e2,t and e3,t. The general prediction equation for the
first of these is

e1,t = β1,2e2,t + β1,3e3,t + α1,t, (5.14)

where α1,t is independent of the predictors e2,t and e3,t. But because there is
no link between e1,t and e3,t, i.e., their partial autocorrelation is zero, we may
omit e3,t from this equation and write

e1,t = β1,2e2,t + α1,t. (5.15)

For the second variable,

e2,t = β2,1e1,t + β2,3e3,t + α2,t, (5.16)
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for which there is no simplification because e2,t is linked to both e1,t and e3,t.
However, the third variable is similar to the first, giving

e3,t = β3,2e2,t + α3,t. (5.17)

The key to constructing a DAG representation for the variables is that
they must be ordered in such a way that each variable is only predicted by
others which are lower in the ordering. This is necessary so that their joint
distribution may be expressed as the product of conditional distributions: for
example, for random variables X , Y and Z, the joint distribution may be
expressed as

f(x, y, z) = f(x)f(y|x)f(z|x, y). (5.18)

In the normal linear context (with mean corrected variables) this means spec-
ifying a marginal variance for X , the regression equation for Y on X with
a residual variance and the regression equation for Z on X and Y with a
residual variance.

Applying this to e1,t, e2,t and e3,t, we require the marginal variance of e1,t,
a regression of e2,t on e1,t and a regression of e3,t on e1,t and e2,t. But we know
from (5.17) that e1,t can be omitted from this last equation, giving

e1,t = a1,t

e2,t = θ2,1e1,t + a2,t

e3,t = θ3,2e2,t + a3,t.

(5.19)

Note that we have used different notation for the coefficients and error terms
from those in (5.14), (5.16) and (5.17) above, because a1,t, a2,t and a3,t are now
orthogonal residuals, a property not shared by the regression errors in (5.14),
(5.16) and (5.17), which are in general correlated. The DAG representation
for these regressions is shown in Figure 5.6.

3,te e e1,t 2,t

Figure 5.6 A possible DAG representation of the VAR(2) innovations of the Flour
price series.

However, we may instead take e2,t lowest in our ordering of the variables,
followed by e1,t then e3,t. This simply interchanges the roles of these variables
in the first two equations of (5.19) and is represented in Figure 5.7.

A third possibility is to reverse the original ordering, which would reverse
the direction of both arrows in Figure 5.6. However, these are the only three
DAGs consistent with the CIG in Figure 5.5. For example, the DAG shown
in Figure 5.8, obtained by reversing both arrows in Figure 5.7, cannot be
deduced from the CIG.
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3,te e e1,t 2,t

Figure 5.7 A further DAG representation of the VAR(2) innovations of the Flour
price series.

3,te e e1,t 2,t

Figure 5.8 An incompatible DAG representation of the VAR(2) innovations of the
Flour price series.

The dependence of e2,t on e1,t and e3,t, as shown, could only be obtained
by taking e2,t as highest in the ordering, but then a dependence of either e3,t
on e1,t, as shown in Figure 5.9, or the reverse, could not be avoided. The DAG
in Figure 5.9 could be used to represent the joint distribution of the variables,
but fails to take advantage of the simplicity of structure revealed in the CIG.

3,te e e1,t 2,t

Figure 5.9 A DAG representation of the VAR(2) innovations of the Flour price
series that fails to take advantage of the simplicity of the CIG.

5.5 Properties of CIGs

The previous illustration with just three variables was particularly simple.
For a general CIG, there are several properties that are useful for interpreting
its structure and determining the possible DAG models by which this struc-
ture may be explained. A useful notion is the set of neighbors of a node (or
variable). These are simply the variables to which that node is linked. The
pairwise Markov property of a CIG is that by which it is constructed—any
two variables that are not linked are conditionally independent given all the
remaining variables. There are two further properties that may be deduced
from this:

• The local Markov property is that each variable, given its neighbors, is
conditionally independent of all the remaining variables.

• The global Markov property. This generalizes the pairwise property to the
case when we consider two groups (or blocks) of variables. If there are no
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links between any pair of variables, one taken from each block, then the two
blocks are conditionally independent of each other given all the remaining
variables.

The local property is a special case of the global property, which may be
deduced from the pairwise property. In the context of the global property,
the two blocks are said to be separated by the remaining variables, and the
result is known as the separation theorem. Its general proof is not simple,
but it is very straightforward if all the variables are assumed to be jointly
normal. Whittaker (1990) provides a general proof with reference to original
sources and acknowledgment of the developers of these ideas. We illustrate
the properties using the CIG shown in Figure 5.10. The neighbors of X2

are X1, X3 and X4, so the local Markov property states that conditional
upon these, X2 is independent of X5 and X6. This independence is not just
pairwise, between the pair X2, X5 and the pair X2, X6, but between X2 and
the variables {X5, X6} taken jointly, which is in general a stronger statement
(although not for multivariate normal variables). The global Markov property
states that {X1, X2} are independent of {X5, X6} conditional upon {X3, X4}.
This has the useful consequence that X2 alone is independent of {X5, X6}
conditional upon {X3, X4}. These properties then enable us to build up one

4 5
X
6

X
1

X
2

X
3

X X

Figure 5.10 A CIG illustrating local and block independence.

possible model for these variables, represented by the DAG in Figure 5.11,
based upon a choice of ordering from X1 as the highest through X6 as the
lowest. There is no simplification of the relationship between X4, X5 and X6,
but X5 can be omitted as an explanatory variable for X3, since it is separated
from {X1, X2, X3} by {X4, X6}. By the earlier argument, both X5 and X6 can
be omitted as explanatory variables for X2. The only explanatory variables
for X1 are X2 and X4, because these are its neighbors.

Given the CIG between a set of variables, the task of formulating a DAG
representation of the relationship between them is considerably enhanced by
use of a theorem, known as the moralization theorem or moralization rule,
by which we may derive the CIG that is implied by any proposed DAG. It is
then possible to postulate DAG representations and check whether they are
consistent with the given CIG. The theorem gives the following simple steps
for deriving the CIG:

1. For each node of the DAG, insert an undirected edge between all pairs of
its parent nodes, unless they are already linked by an edge.
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Figure 5.11 A DAG representation of a model that may be deduced from the CIG in
Figure 5.10.

2. Replace each directed edge in the DAG by an undirected edge.

The first step is described as marrying the parents, and hence the construction
of the CIG is called moralization of the graph (Lauritzen and Spiegelhalter,
1988).

As an example, consider the DAG in Figure 5.11. In this example, moral-
ization introduces no new edges and the resulting CIG is just that in Figure
5.10. However, consider next a trimmed version of this DAG, as shown in
Figure 5.12. Moralization of the parents of X1 will lead to a link between X2

and X4. Also, moralization of the parents of X4 leads to a link between X5

and X6. The resulting CIG is therefore the same as that in Figure 5.10. In
practice, it is not always straightforward to formulate a DAG, or set of DAGs,
that are consistent with a given CIG, and there are simple examples of CIGs
with which no DAG is consistent. This can occur due to omission of important
variables from the set considered. In the multivariate normal case, it is always
possible to fit a regression of each variable on those lower in any chosen order-
ing, to obtain a model represented by a DAG and which will reproduce the
partial correlation graph from which the CIG is constructed. However, there
is no reason why such a DAG should reflect any sparse structure in the CIG.

4 5
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X X

Figure 5.12 A DAG representation of a reduced model for which the corresponding
CIG is also that shown in Figure 5.10.

In general, however, the moralization theorem can be very helpful in se-
lecting one or more DAG representations of the variables and excluding cer-
tain possibilities. For example, from the DAG in Figure 5.11, it is possible
to remove either the edge between X4 and X6 or that between X5 and X6

and retain consistency with the CIG in Figure 5.10, but not to remove both
together. For the Flour price innovations, the moralization theorem tells us
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immediately that the DAG in Figure 5.8 is not consistent with the CIG in
Figure 5.5, because it implies a moralization link between e1,t and e3,t. In the
case of multivariate normal variables, it is possible to determine some simple
quantitative rules for the magnitudes of links in the partial correlation graph
that arise due to moralization. These would, for example, help to suggest
whether the edge between X4 and X6 or that between X5 and X6 might be a
moralization link in the CIG in Figure 5.10. We set out these rules in Section
5.8, but reproduce the most simple of them here. The others extend this rule
to situations where the three variables have parents and children.

The DAG on the left of Figure 5.13 represents a variable z dependent
on the independent variables x and y. The CIG on the right represents the
moralized CIG. The partial correlation of the moralized link in this graph is
given in terms of the other two by the product rule, which is developed further
in Section 5.8:

π(x, y) = −π(x, z)× π(y, z). (5.20)

z

yx

z

yx

Figure 5.13 A simple directed graph and its corresponding conditional independence
graph.

In practice, the selection between different possible DAG explanations of
an estimated CIG is assisted by comparing the goodness of fit of the estimated
models and testing for significance of the coefficients that correspond to links
in the competing models. We illustrate this procedure in the next section.

5.6 Estimation and selection of DAGs

We will continue to work in the context of a random sample from a multivari-
ate normal distribution, the innovations from the Flour price series providing
an appropriate example which we use for illustration. The main ideas of this
section are readily extended to the time series context, including lagged values,
in the next section. As in Section 5.3, let the data matrix X with elements
xi,j consist of columns x1, x2, . . . , xm of the mean corrected samples of the
variables X = {X1, X2, . . . , Xm}. Any proposed DAG representing these vari-
ables specifies a regression equation for each variable in terms of a subset
of the remaining variables, with the assumption that the errors from any one
regression are uncorrelated with those from another. To fit the DAG, we there-
fore carry out ordinary least squares (OLS) regression of each data column
xi on the explanatory columns specified by the DAG. This provides estimates
of the coefficients corresponding to each link in the DAG, and their t value,
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and columns ai of residuals constituting a matrix A. Figure 5.14 shows one
of the DAG models considered for the Flour price series innovations, with the
estimated coefficients and t values (in parentheses) adjacent to the links.

(20.1)
e e e1,t 2,t 3,t

1.033 0.998

(37.0)

Figure 5.14 A fitted DAG model of the VAR(2) innovations of the Flour price series,
with the estimated coefficients and t values (in parentheses) adjacent to the links.

The estimated coefficients are clearly highly significant. The next step is
to assess the adequacy of this model as a representation of the relationships
between the variables. For this purpose, we first use the likelihood of the model
and its associated information criteria. In practice, we will use the deviance
of the model, i.e., minus twice the log likelihood, which is given by

n (log s1 + log s2 + log s3) (5.21)

where s1, s2 and s3 are the sample variances of the residuals (not corrected
for degrees of freedom)

si =
1

n

n∑

t=1

a2i,t. (5.22)

The difference between this and the likelihood of the saturated model, which
also includes e1,t in the regression for e3,t, we will call the deviance reduction
D. We will compare this with the difference in degrees of freedom, k, between
the proposed model and the saturated model, which is just 1 in this example.
For a formal test of the null hypothesis that coefficients of the omitted links
in the DAG are all zero, we can refer D to the chi-squared distribution on k
degrees of freedom. The information criteria that we will use are defined by
D+2k for the AIC, D+2(log logn)k for the HQC and D+(logn)k for the SIC.
The values of these for this example are displayed in Table 5.1. The deviance
difference is less than the degrees of freedom (df), so there is no reason not to
prefer the proposed model to the saturated model. The information criteria
are all negative, indicating preference for the proposed model. The further step

Table 5.1 Likelihood assessment of the DAG in Figure 5.14.

df k deviance D AIC HQC SIC
1 0.05 −1.95 −2.99 −4.53

to assess the adequacy of the fitted model is to check the cross-correlations
between the residuals, as shown in Table 5.2.

The correlation between a1,t and a2,t is necessarily zero as a result of
the regression, but the other two are not. The approximate standard error of
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Table 5.2 Correlations between residuals of the DAG fitted to the Flour price inno-
vation series.

a1,t a2,t a3,t
a1,t 1.000
a2,t 0.000 1.000
a3,t 0.006 −0.022 1.000

these two correlations is bounded by 1/
√
n = 0.101, and we deem them to be

acceptable, i.e., not suggestive of any model inadequacy.
In Section 5.4 we showed that the DAG in Figure 5.7 was also consistent

with the estimated CIG of these variables, and so was the DAG in Figure 5.6
with the edge directions reversed. If we fit these, we find that they give exactly
the same deviance and information criteria as in Table 5.1. We say that these
models are likelihood equivalent—they imply exactly the same distributional
properties of the variables, although the residual series are different because of
the different orderings of the variables in the DAG. All saturated models are
also likelihood equivalent to each other, so any one of them may be specified
to obtain the saturated model deviance. However, on fitting the model shown
in Figure 5.8, which is not consistent with the CIG, a deviance difference of
139.6 shows how extremely inadequate is that representation of the depen-
dence between the variables. This very simple example has been a platform
for introducing the main ideas, which we will now demonstrate in the time
series context.

5.7 Building a structural VAR, SVAR

There are six possible saturated DAGs representing the relationships between
three variables, corresponding to the number of distinct orderings. Consider-
ation of the CIG of the Flour prices series innovations reduced the number
under consideration to three. Each of those three models extends naturally to
an SVAR(2) model for the original series, in which the dependency between
the current variables is exactly the same as for that between the innovations,
but with the additional dependence on all values up to lag 2. Thus the innova-
tions model in Figure 5.14 extends to the SVAR in Figure 5.15. When fitted,
the estimated coefficients between current variables in the extended SVAR(2)
are exactly the same as for the innovations model, and so are the deviance
and information criteria.

To continue the analysis, we now estimate the CIG between all the current
values and the variables lagged up to the model order of 2. Recall that this
order was determined by application of the AIC to the saturated VAR. The
implication is that, given the variables up to lag 2, no variables at a greater lag
have predictive value. However, we must restrict the lags used to construct the
CIG to those up to the model order. If we were to include values up to greater
lags, the partial correlations would in general be reduced in magnitude (see



BUILDING A STRUCTURAL VAR, SVAR 147

3,t−1
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1,t−1 2,t−1

Figure 5.15 The SVAR(2) series model equivalent to the innovations model in Figure
5.14.

Chapter 9). In fact, we need only the partial correlations between the current
variables and between the current and lagged variables. These correspond to
the dependencies which are considered for inclusion in the SVAR. We do not
need the partial correlations between any pair of lagged values, although these
will be produced as part of the calculations.

To estimate the CIG, we assemble a data matrix X in which the columns
in general consist of {xi,t−u; t = p+1, . . . , n} for i = 1, . . . ,m and u = 0, . . . , p,
where p is the model order. The estimated CIG is then constructed exactly
as before, and from this we extract the required values. For the Flour price
series, these are shown in Table 5.3.

The critical values for significance at the levels 0.10, 0.05 and 0.01 are, re-
spectively, 0.171, 0.202 and 0.262. These are based on transforming the critical

Table 5.3 Partial autocorrelations, up to lag 2, between the Flour price series.

x1,t x2,t x3,t

x1,t

x2,t 0.853

x3,t 0.023 0.448

x1,t−1 0.452 −0.497 0.130
x2,t−1 −0.288 0.522 −0.402
x3,t−1 −0.012 −0.299 0.658

x1,t−2 0.478 −0.301 −0.132
x2,t−2 −0.412 0.264 0.054
x3,t−2 −0.036 0.036 0.058
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values of the normal distribution, as described in Section 5.3, rather than the
t distribution, not only because the degrees of freedom are sufficiently high,
but because the small sample theory underlying the t distribution does not
fully extend to the context of multivariate time series regression. However, the
asymptotic use of the normal distribution is justified; see Reale and Tunni-
cliffe Wilson (2002) and Tunnicliffe Wilson and Reale (2008). It will be noted
that there are 13 significant values according to these critical values, shown in
bold type in the table, and they are all significant at the 0.01 level. Note that
the partial correlations between current variables are necessarily identical to
those between the innovations.

x x
1,t−2 2,t−2 3,t−2x

x xx
1,t−1 2,t−1 3,t−1

0.66

−0.31 0.26

0.85 0.45

0.45
−0.29

0.45

0.48

−0.41

−0.40

−0.30

0.52

1,tx 2,t 3,tx x

Figure 5.16 The estimated CIG constructed for the Flour price series with partial
correlations shown adjacent to the links.

Figure 5.16 shows the resulting CIG. The links between current and lagged
values provide further information beyond that in the CIG for the innovations
alone for identifying the directions of dependence between current variables
in the DAG representation of an SVAR model for the series. They also inform
us about the links between current and lagged values in the DAG:

1. A link is certainly required between x2,t and x3,t in this DAG. There is
strong evidence that this is not in the direction x2,t ← x3,t, because this
would lead us to expect moralization links in the CIG, between x3,t and all
the other parents of x2,t in a possible DAG representation. Three strong
candidates for such parents, which have no links with x3,t, are the lagged
values x1,t−1, x1,t−2 and x2,t−2, and we would have to suppose that their
links with x2,t all arose from moralization if our argument were to fail. Our
working hypothesis is therefore to assume the direction of this link to be
x2,t → x3,t.

2. The link between x2,t and x3,t−1, with a partial correlation of −0.299, is
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now a strong candidate for explanation as a moralization link. Applying
the product rule, this partial correlation is very close to −0.295, which is
the negative product of the partial correlations of 0.448 and 0.658 between,
respectively, the hypothesised parents x2,t and x3,t−1 and their common
child x3,t.

The result of these arguments is that x3,t depends in a simple manner on
only x2,t, x2,t−1 and its own lagged value x3,t−1. The series x1,t and x2,t are not
dependent on x3,t at all, and their interdependence appears to be qualitatively
symmetrical in the CIG of Figure 5.16. There are two likelihood equivalent
DAG interpretations, in both of which all the links between these two series
and their lagged values are included. The only difference lies in the choice
of direction of the dependence between x1,t and x2,t. However, in the model
where this direction is chosen to be x1,t → x2,t, the coefficient of the link
x1,t−1 → x1,t in the estimated DAG has a t value of 0.95. We therefore choose
the direction x1,t → x2,t and exclude the link x1,t−1 → x1,t, which therefore
suggests that the corresponding link in the CIG is due to moralization. This
gives the more parsimonious SVAR as that represented in Figure 5.17.

1.04
x x
2,t1,t 3,tx

x x
1,t−2 2,t−2 3,t−2x

x xx
1,t−1 2,t−1 3,t−1

0.91

(18.9)

1.09

(5.9)

−0.47

(4.4)
0.45

(4.2)

(−15.5)

−0.92
0.52

(5.0)

1.15
(12.8)

−0.54
(−5.8)

−1.28

(−6.5)

1.00 (20.6)(37.5)

Figure 5.17 The DAG representing a parsimonious SVAR for the Flour price series,
with estimated model coefficients, and t values in parentheses, adjacent to the links.

This model was again estimated by OLS regression of each current vari-
able in turn, upon the explanatory variables indicated by the DAG, with the
regression vectors taken from the same data matrix of current and lagged
values used in the construction of the CIG. The estimated coefficients and
their t values are shown adjacent to the corresponding links in Figure 5.17.
Re-estimation of the model using full maximum likelihood only has a small
gain in efficiency for a series of this length. This comes from making use of
the relatively small amount of extra information in the first two months of
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data that were necessarily trimmed from the vectors of current variables in the
data matrix. The maximum likelihood estimates, only slightly different from
the OLS estimates, are actually shown in (5.23), which displays the coefficient
matrices Φ0, Φ1 and Φ2 of the SVAR as used in the model equation (5.1).

Φ0 Φ1 Φ2




1 0 0
−1.04 1 0

0 −1.01 1






0 1.16 0
−0.54 0.52 0

0 −0.91 0.89






1.14 −1.13 0
−0.45 0.43 0

0 0 0


 .

(5.23)

Table 5.4 gives the values of the deviance difference and information cri-
teria relative to the saturated model as estimated by OLS. This gives 0.11
for the p-value of testing the null hypothesis that the omitted coefficients are
zero. The information criteria also favor the chosen SVAR.

Table 5.4 Likelihood assessment of the DAG in Figure 5.17.

df k deviance D AIC HQC SIC
10.00 15.69 −4.31 −14.77 −30.16

The SVAR model, for these series, lends itself better to interpretation than
the canonical VAR. First, the representation for x3,t can be re-arranged with
only a minor approximation as a simple regression on x2,t with a univariate
AR(1) disturbance:

x3,t = x2,t + nt (5.24)

nt = 0.91nt−1 + at.

Second, again with only minor approximation, we can represent

x1,t = x1,t−2 + (x2,t−1 − x2,t−2) + a1,t, (5.25)

in which the current value of x1,t is the value two months previously, but with
a correction equal to the change in price of x2,t over the previous two months.
Third, we can approximate

x2,t = x1,t + 0.5 (x2,t−1 + x2,t−2)− 0.5 (x1,t−1 + x1,t−2) + a2,t, (5.26)

in which the current value of x2,t is the current value of x1,t corrected by the
difference between the average price of the two series over the previous two
months.

A structural model such as we have constructed does not take into account
the fact that the Flour price series also reflect cycles of general economic
activity which appear to be evident in their plots, and the model we have
fitted does not capture any such cyclical behavior. However, the model has
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a simple interpretable structure. With just 11 coefficients, 10 fewer than a
saturated model (and three variance parameters), it competes well with other
published models for these series. A structural VARMA(1,1) model has also
been developed for these series in Oxley et al. (2009). This also has a simple
interpretation, but the construction of a VARMA model is in general much
more difficult, and we do not pursue this line of model development in this
book.

The construction of the SVAR model is not completed until we have car-
ried out sensible checks. As before, we check the cross-correlations between
current residuals, which are shown in Table 5.5. We also check the lagged cross-
correlations shown in Figure 5.18, with error limits of ±2/√n. These limits
give a good indication of the adequacy of the cross-correlations, although they
do not allow for the effects of parameter estimation.

Table 5.5 Correlations between residuals of the final SVAR(2) for the Flour price
series.

a1,t a2,t a3,t
a1,t 1.000
a2,t 0.000 1.000
a3,t −0.019 −0.023 1.000
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Figure 5.18 Residual auto- and cross-correlations of the final SVAR(2) model for
the Flour price series. Nominal two standard error limits about zero are shown by
the gray lines.

There are no indications of model inadequacy to be gleaned from these
checks. Our final comment on this model is that it is stationary, though the
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reciprocal roots of the operator in the reduced VAR model are 0.9879, 0.9228,
0.9083, −0.4643, 0.2680 and 0.0. The first of these is close to the boundary of
stationarity. We pointed out in Chapter 2 that a sparse VAR(p) model fitted
by solving Yule–Walker equations does not necessarily reproduce any lagged
correlations and it is not necessarily stationary. The same is true of the sparse
SVAR models that we have explored by graphical modeling and fitted by OLS.
However, what we have aimed to do is to reproduce all the partial correlations
up to lag p, by selecting terms in the sparse model that capture the pattern
of zero and non-zero partial correlations. As a final check, in Table 5.6 we
compare the partial correlations that may be computed for the fitted model
with the sample values used to identify the model. The two entries that arise
by moralization are between x1,t and x1,t−1, and between x2,t and x3,t−1. The
general impression is that the model captures the sample partial correlations
quite well. There is strong correlation both between and within these series.
However, the graphical modeling approach we have followed has overcome the
potential problems of multicollinearity and generated a model that has simple
and interpretable structure.

Table 5.6 Each pair of columns shows, on the left, the sample partial autocorrelations
up to lag 2 between the Flour price series, and on the right, the non-zero partial
correlations of the selected model shown alongside. The bold numbers indicate a non-
zero model value, with the corresponding sample value to its left.

x1,t x2,t x3,t

x1,t

x2,t 0.853 0.861

x3,t 0.023 0.448 0.458

x1,t−1 0.452 0.482 −0.497 −0.442 0.130
x2,t−1 −0.288 −0.329 0.522 0.524 −0.402 −0.368
x3,t−1 −0.012 −0.299 −0.308 0.658 0.672

x1,t−2 0.478 0.486 −0.301 −0.385 −0.132
x2,t−2 −0.412 −0.439 0.264 0.337 0.054
x3,t−2 −0.036 0.036 0.058

Another check that is advisable, where appropriate, is to compare the
spectral properties of the fitted model with smoothed spectral estimates of
the series, and a final check is to hold back some data at the end of the
series to compare with out-of-sample forecasts of the same points made using
the model. We will illustrate these checks as they are applied to the further
example in Section 5.10.

We end this section by summarizing the steps by which we build our SVAR:

• Use the AIC to determine the order of a saturated VAR model which well
represents the series.

• Construct the sample CIG of the estimated innovation series derived from
this VAR model.
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• Use this to explore possible DAG representations of the innovation series.

• Estimate these DAG models and check their likelihood criteria and residual
cross-correlations.

• Construct the sample CIG of the series and its values lagged up to the
determined order.

• Use this to explore possible DAG representations of an SVAR model for
the series, basing the selected dependencies between current variables on
those explored for the innovation series.

• Estimate these DAG models and check their likelihood criteria and lagged
residual auto- and cross-correlations. If necessary, include or exclude terms
from the model to achieve an adequate sparse model.

• Check that the CIG implied by the model reasonably well matches the
sample CIG; apply other comparisons of the model and sample spectral
properties and examine an out-of-sample set of forecasts from the model to
assess its consistency in this respect.

5.8 Properties of partial correlation graphs

The main aim of this chapter is to show how the estimated partial correlation
matrix may inform us in selecting the dependencies between the current and
lagged terms of a structural vector autoregressive model. An important tool
has been the rule for moralization of an hypothesized DAG representation of
these variables, to derive the implied CIG of the model, for comparison with
the estimated CIG. One converse application of the rule is that a pattern in
the CIG, of the form shown on the left of Figure 5.19, excludes the pattern in
the DAG shown on the right of the same figure as a possible interpretation.
The three DAGs in which one or both of the directions of the links are reversed
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Figure 5.19 A simple conditional independence graph and the directed graph inter-
pretation that it excludes.

are consistent with the CIG that is shown. Because the direction of a link from
the past is determined by the arrow of time, this simple result can often give a
useful indication of the direction of a link between current variables, as shown
in the example of the Flour price series.

It will be useful before our next example in Section 5.10, to look further
at the relationship between the model structure and the partial correlation
matrix that underlies the moralization rule. In this section, we list some quan-
titative features which may assist in its intelligent application, particularly in


