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3.10.2 Gas furnace series

We next explain how a simple adjustment to the methods described can im-
prove the estimates of the dependence between two series when there is an
appreciable time lag in the relationship between them. The example we use
for illustration is the series of input and output measurements on a gas fur-
nace that have been previously modeled by spectral analysis in Jenkins and
Watts (1968), and by lagged correlation methods in Box and Jenkins (1970).
They are shown in Figure 3.18 but with the Input series negated so that the
relationship between the series is positive. It is easy to see a strong similarity
in the patterns of the two series, and the slight lag of variations in the Output,
behind those in the Input. Figure 3.19(a) shows the lagged response between
the series, estimated using a bandwidth of 0.05. The response peaks at a lag
of 5 sampling intervals, which is also the lag at which the cross-correlation
between the series has its maximum. Figure 3.19(b) shows the corresponding
estimated squared coherency, confirming a strongly significant relationship.
These estimates can, however, be improved if we first align the series by lag-
ging the Input by 5 sampling intervals. The lagged response estimated after
this alignment is shown in Figure 3.19(c) after adjusting the lag to restore the
correct alignment.
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Figure 3.18 Gas furnace time series: (a) Input and (b) Output.

Notice that the peak in the response becomes more pronounced and the
significance limits are centered on the chosen alignment lag. However, the
more dramatic revision is to the estimated squared coherency shown in Fig-
ure 3.19(d). This is now much closer to 1 at frequencies below 0.05. The reason
for the improvement can be seen from the plots in Figure 3.20 of the estimated
gain and phase for this example. The gain reduces by a relatively small factor
over this low frequency range, but the phase increases rapidly. The coeffi-
cients in the relationship between the harmonic components, as presented in
the harmonic regression equation (3.32), are therefore rapidly varying. This
regression cannot explain such a high proportion of the variability using a
fixed pair of coefficients across the bandwidth, leading to a reduction in the
squared coherency.

An appropriate value for the alignment lag is the slope of the estimated
phase close to the origin, which in this example, by visual inspection of Figure
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Figure 3.19 Spectral estimates for the Gas furnace series: (a) the lagged response
from Input to Output and (b) the squared coherency between the series, both estimated
without alignment. (c) The lagged response from Input to Output and (d) the squared
coherency between the series, both estimated with alignment.
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Figure 3.20 Spectral estimates for the Gas furnace series: (a) the gain of the response
from Input to Output and (b) the phase.

3.20(b), is seen to be 5. Aligning the series by a lag ` subtracts the linear term
`f from the phase, where f is the frequency. The coefficients in the harmonic
regression are then more nearly uniform at low frequency, which improves
the estimation of squared coherency, gain and phase. The phase estimated
after alignment of the series is then corrected by adding on the term `f ,
restoring an improved estimate of the phase for the series prior to alignment.
The overall result can also be achieved by centering the lag window wk on the
cross-covariance between the series at lag ` instead of lag zero.

3.10.3 Weekly moth trappings

We now consider issues illustrated by the investigation of how the numbers
of Lepidoptera (moths) trapped each week are dependent upon two climate
variables, temperature and rainfall. Figure 3.21(a) shows the Moth counts



84 SPECTRAL ANALYSIS OF DEPENDENT SERIES

for the 345 weeks beginning in the first week of 1993 at Drayton in the UK.
These are the daily average numbers of moths trapped. Figure 3.22 shows
two climate variables for the same times and place. The Temperature series
is the average daily temperature, and the Rainfall series is the average daily
rainfall. The main practical point in this example is the importance of correct-
ing for large fixed cycles arising from seasonal patterns in both explanatory
and response series. A further consideration, which arises more generally in
regression modeling, is the appropriate use of data transformations.
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Figure 3.21 Daily average numbers of moths trapped weekly at Drayton from the
first week of 1993: (a) original counts, (b) the counts transformed by adding one
then taking logarithms.
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Figure 3.22 Climate variables recorded weekly at Drayton from the first week of 1993:
(a) a daily air temperature in degrees Celsius, (b) average daily rainfall in mm.

Both the Moth count and the Temperature series show a strong annual
cycle with peaks in summer and troughs in winter. Inevitably, this leads to
a strong correlation between these two series, but this does not necessarily
characterize the dependence in which we are interested. A similar strong cor-
relation would be found if we used temperatures from almost any mid-latitude
northern hemisphere site. Our interest is in discovering how the local temper-
ature and rainfall affect the variations in moth trappings from week to week,
and for this reason we will correct both the Moth count and Temperature
series for a fixed annual cycle. However, before applying this correction to
the Moth count, we note the marked asymmetry of this series, with much
higher variability and a sharper peak in the summer than in the winter. The
standard statistical approach to this issue is to consider a transformation of
the series. Figure 3.21(b) shows the Moth count after applying a logarithmic
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Figure 3.23 Series corrected for annual cycles: (a) weekly Moth number, (b) weekly
Temperature.

transformation which results in a much more symmetric annual pattern of
variation. We will call this transformed series the Moth number.

To correct the Moth number and the Temperature series for the annual
cycle, we regress each upon the set of functions cos(2πkt/p) and sin(2πkt/p)
and subtract the fitted values. The corrected series are shown in Figure 3.23.
The period p used to define the regressors is 365.24/7 = 52.18 weeks in the
year. The regressor for k = 1 defines the fundamental annual cycle but the
regressor with k = 2, for the second harmonic of this cycle, was also included
for each series. Figure 3.24 shows how this decision was made for the Moth
number; the same applied to the Temperature series. Figure 3.24(a) is the
sample spectrum of the series with the prominent peak indicating the funda-
mental seasonal cycle. Figure 3.24(b) is the sample spectrum after the series
has been corrected for this cycle. Again there is a peak that is prominent,
though much less so than before, and now at the second seasonal harmonic
frequency of 0.0383. One might also imagine peaks at the third and fourth
harmonic frequencies (0.0575, 0.0767) of the annual cycle. These are, how-
ever, comparable to the general level of the neighboring sample spectra and
will not, individually, contribute substantially to the variance of the series or
the correlation between them. Correcting for the first fundamental and second
harmonic of the seasonal cycle is sufficient to ensure that these features do
not dominate in our modeling of the dependence between the series.

These peaks in the spectrum corresponding to the annual cycles are known
as discrete spectral components. Failure to correct for these can distort the
analysis, as we have just pointed out and will illustrate below for the coherency
estimates. Note also that if a series has a non-zero mean that is not corrected,
this will be evident as a discrete spectral component at frequency zero and
can similarly lead to distortion of the analysis.

Figure 3.25 shows the estimated lagged response in the dependence of the
corrected Moth number on the corrected Temperature series and the Rainfall
series. Note that there is no lag dependence in the first of these. The Tempera-
ture has only a simultaneous positive effect on the Moth number. In contrast,
the Rainfall has an extended lagged negative effect both in the immediately
following weeks and also after a lag of about 7 weeks, associated with the
typical summer breeding cycle of the moths.
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Figure 3.24 Sample spectrum of Moth number: (a) before correction, (b) after cor-
rection by the fundamental annual cycle.
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Figure 3.25 Estimated responses of corrected Moth number to (a) corrected Temper-
ature and (b) Rainfall.

We do not show the estimated responses using the Moth number and the
Temperature series without correcting for the seasonal cycle. They do look
very similar to those shown in Figure 3.25 for the corrected series. To un-
derstand this, Figure 3.26(a) shows a scatter plot of the harmonic contrasts,
both cosine and sine, of the Moth number against those of the Temperature,
before correction. The plot shows only the harmonic frequencies, and we have
restricted the series length to 313, corresponding to six annual cycles. The con-
trasts corresponding to the fundamental frequencies of these cycles are then at
exactly the sixth harmonic frequency. The two outliers in this plot correspond
to these cycles, all other points clustering close to the origin. Figure 3.26(b)
shows the plot when the outliers are removed. In fact, the slope of the regres-
sion is quite close for both plots, indicating that the effects of temperature
on the larger scale of the annual cycle are very similar to those on the small
scale of week to week variations. The wisdom of correcting for annual cycles
is that, were the effects not similar on these two scales, the estimation of the
week to week response would be distorted by including the dominating effect
of the large magnitude annual cycle.

To conclude this example, Figure 3.27 shows the partial coherency between
the Moth numbers and the Temperature series, both before and after correct-
ing the two series for the annual cycle. The very high coherency between the
uncorrected series at low frequencies is typical of that resulting from a strong
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Figure 3.26 Scatter plot of harmonic contrasts of the Moth numbers against those of
the Temperature series: (a) showing all points and (b) scaled to exclude outliers.

deterministic cycle of the same period in both series. In this example there
is also strong coherency at higher frequencies to give assurance of significant
dependence between the series. It is, however, always good statistical prac-
tice to correct for strong seasonal cycles before investigating the dependence
between series.
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Figure 3.27 Partial coherency between the Moth number and the Temperature series:
(a) before correcting for the annual cycle and (b) after correction.

3.10.4 Natural gas sendout series

Our next example also involves correction for seasonal effects, but also shows
how an apparently small non-causal response at a negative lag could be ex-
plained by contamination of the explanatory variable by noise. Figure 3.28(a)
shows the natural Gas sendout, as it is known, in a southeast region of England
from 1st September 1977 to 31st August 1978. This should be the amount of
gas consumed except that some is lost in transmission. Figure 3.28(b) shows
a Meteorological indicator which is designed to help explain and possibly pre-
dict the Gas sendout. The main component of the indicator is temperature,
but wind chill is also considered. The relationship between the series is clearly
negative and quite strong, as the plot of one against the other shows in Figure
3.28(e).
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Figure 3.28 (a) Daily Gas sendout over the period of one year. (b) A Meteorologi-
cal indicator designed as a predictor of sendout. (c) The Gas sendout corrected for
annual and weekly cycles. (d) The Meteorological indicator corrected for an annual
cycle and reversed in sign. (e) The scatter plot of Gas sendout against the Mete-
orological indicator. (f) The scatter plot of the corrected Gas sendout against the
corrected Meteorological indicator.

Both series are corrected for an annual cycle of period 365.24. The Gas
sendout series is also corrected for a weekly pattern of period 7 by regression
on the complete set of cosine and sine cycles of frequencies 1/7, 2/7 and
3/7. Figures 3.28(c) and (d) show the corrected series with the sign of the
Meteorological indicator reversed so that it becomes a direct predictor of Gas
sendout, displaying a positive relationship. Figure 3.28(f) shows the graph of
the corrected series against each other, with the appearance of a standard
bivariate normal scatter. The small number of lower outliers arise from the
Christmas period. A further correction could be made for these, but their
presence will not greatly affect the analysis. Figures 3.29(a) and (b) show the
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estimated gain and lagged response function between these corrected series.
The dominant feature of the lagged response is the coefficient of 0.915 at lag
zero, but note that the gain at frequency zero is 90% greater at 1.75. There is a
low level of response at positive lags which, though not apparently significant
beyond lag 3, is cumulatively substantial. A unit step in the Meteorological
indicator would imply an immediate increase in Gas sendout of 0.915, rising to
a level of 1.75 over the next few days as lower temperatures gradually permeate
structures. The regression slope of Figure 3.28(f) is 1.3, a compromise between
these two values which would over-estimate the immediate impact and under-
estimate the longer term.
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Figure 3.29 (a) The gain of the frequency response and (b) the lagged response of
the corrected Gas sendout to the corrected Meteorological indicator. (c) The gain of
the frequency response and (d) the lagged response of the corrected Gas sendout to
the smoothed corrected Meteorological indicator.

However, we also note a small but quite significant response coefficient at
a lag of −1. Both non-causal dependence and feedback are implausible ex-
planations of this, but it could be explained if the Meteorological indicator
were considered to be affected by noise in the form of measurement error.
Figures 3.29(c) and (d) show the gain and response function re-estimated af-
ter applying a small amount of smoothing to the Meteorological indicator.
The smoothing was a centered symmetric moving average of total span 5 lags,
with weights of (1 − a) at lag 0, 4a/6 at lags ±1 and −a/6 at lags ±2: the
choice of a = 0.25 was made following a small amount of experimentation.
This approximates a cubic spline smoother and is designed to preserve a cu-
bic through these points whilst reducing the variance of added white noise.
Note now that in Figure 3.29(d) there is no longer any significant non-causal
response at negative lags and that the response at lag 0 has increased to 1.23.
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The gain at zero frequency is unchanged at 1.75, because the smoother leaves
the spectrum unchanged at this frequency. There is still therefore a 43% in-
crease beyond the initial response in the eventual response to a step change
of the Meteorological indicator.

Consider a response estimated from a stationary input series contaminated
by white noise that is uncorrelated with both input and output. The noise-free
input can be optimally estimated by a projection operator which reduces to the
application of a smoothing filter. The estimated response to the contaminated
input is given in the frequency domain as the product of the transfer function
of the smoothing filter with the transfer function of the output response from
the noise-free input series. In the time domain the lagged responses of the two
are convoluted: the response to the contaminated input is given by applying
the smoothing weights to the response to the uncontaminated input. This
appears to be a plausible explanation of what is seen in this example.

3.10.5 Extrusion process series

Our next example illustrates how understanding the properties of the esti-
mates of transfer functions in the frequency domain can help to improve the
estimates of lagged regression. We estimate the response of the times series of
Extrusion pressure to the Heater current and Valve setting shown in Figure
1.9 for the plastic Film extrusion process. Figure 3.30(a) shows the partial co-
herency between Heater current and Extrusion pressure, and Figure 3.30(b)
shows the gain of the frequency response from Heater current to Extrusion
pressure. Figure 3.30(c) shows the estimated lagged response from Heater
current to Extrusion pressure.
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Figure 3.30 (a) The partial coherency and (b) the gain of the frequency response from
Heater current to Extrusion pressure. (c) The lagged response of the relationship and
(d) the lagged response formed using a cutoff frequency of 0.2.
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Note that the partial coherency is only significant below frequency 0.1,
and the gain estimates and standard errors fall away rapidly to frequency
0.2. However, above frequency 0.2, and in particular around frequency 0.35,
the gain estimate is relatively large but poorly estimated with large standard
errors, and not at all significant as assessed by the partial coherency. There
is no significant (partial) dependence in this frequency range, but a relatively
high variance of the harmonic contrasts in the response (Extrusion pressure)
relative to those in the explanatory variable (Heater pressure) leads to these
spuriously high estimates of gain. This effect increases the variability of all
the lagged responses obtained by transformation of the frequency response,
but it can be avoided by zeroing the estimated frequency response above a
cutoff frequency, which we choose here as 0.2. The cutoff is tapered down to
zero smoothly over an interval of twice the chosen bandwidth, centered on the
cutoff frequency. The resulting lagged response is shown in Figure 3.30(d). It
follows the same general shape as before this modification but is smoother in
appearance and has much narrower significance bands. This cutoff procedure
may be appropriate for similar process data where the sampling interval for
recording the variables is chosen to avoid aliasing. The spectra and cross-
spectra in the higher frequency range may then be low in magnitude and
contain little information relating to the dependence between the series. The
cutoff procedure then provides good estimates of lagged response without
recourse to sub-sampling.

3.10.6 Sales series

The time series used in each of the previous examples can be considered to be
jointly stationary processes. We now consider an example in which the weekly
sales volume of a certain product, over a period of four years, is related to
its price and a measure of spending on advertising promotions of the prod-
uct. These series are shown in Figure 1.5, and none of them appears to be
stationary. Both the Sales and the Price series have an obvious trend. The
Promotion series varies considerably in magnitude with a twenty week period
of zeros partway through. The Sales are also strongly affected by Christmas,
and to investigate the impact of this season a further explanatory variable
is introduced, an indicator variable taking the value of one in the Christmas
week and zero otherwise. Brillinger (1981, Ch. 6) presents a careful treatment
of the spectral analysis of series such as these. The methods we have been
using can be extended to this context, with explanatory series that may be
deterministic rather than stochastic and stationary, under two provisions:

1. The response series is stationary conditional upon the explanatory series;
i.e., after removing the effects of the explanatory variable, the part remain-
ing is stationary.

2. The harmonic contrasts of the explanatory variables are non-zero in any
given bandwidth within the frequency range. These are required to ex-
plain the harmonic contrasts of the response, and a regression fails if the
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regressors are zero. A clear exception to this provision is when an explana-
tory variable consists of one pure cycle (or the sum of a small number of
cycles). The contrasts will be zero in any bandwidth that does not contain
the frequency of this cycle. In this example the Christmas indicator can be
represented as the sum of cycles at frequencies k/52 for integer k, but the
chosen bandwidth of 0.1 contains several such frequencies so no problem
arises.

Expressions for the large sample properties of the estimates of the transfer
function are very slightly different for dependence upon deterministic series;
see Brillinger (1981, p. 200, 201). The difference relates to the smoothing
weights that should be applied to the sample spectrum of the dependent series.
We will, however, use the same expressions as for dependence upon stationary
series, because this makes very little difference in practical applications.

The Sales, Price and Promotion series are shown in Figure 1.5. It is not wise
to assume that the downward trend in the Price explains the upward trend
in Sales, and in a simple regression context this assumption would be avoided
by adding a linear trend as a further explanatory variable. An equivalent
step would be to subtract from each series its trend. We have applied that
correction before our cross-spectral analysis, the results of which are presented
in Figure 3.31.

This example is typical of market response modeling, in that the effects are
not strongly significant, even though the Christmas effect may appear strong.
We note that:

1. The response to Price appears to be simultaneous with the price variation,
with a lag zero response that is just significant at −0.6. However, the gain
in Figure 3.31(d) shows that the magnitude of the response is close to 2 at
higher frequencies, suggesting that the reaction to frequent price changes
is more substantial. At low frequency the gain is much smaller and barely
significant, suggesting a longer term insensitivity to price change, possibly
reflecting brand loyalty. A simple regression of Sales on Price, Promotion,
the Christmas indicator and a linear trend gives a coefficient of −0.7 for
price, whilst a regression between the differenced series, which accentuates
the effect of changes, gives a coefficient of −1.1 on price. Simple regres-
sion, omitting lags and neglecting error correlation, delivers a compromise
coefficient. The gain gives the more comprehensive picture of the response.

2. The response to Promotions is again barely significant but remains posi-
tive up to lag 10. The corresponding low frequency gain supports a more
strongly significant long term effect, which is valuable marketing knowledge.

3. The response to Christmas is clearly significant, with the pattern indicating
a build up for a week or two before hand and a rebound in sales a week or
two afterwards. This is not surprising, but the gain at low frequency shows
considerable uncertainty as to whether Christmas had any net effect upon
total sales over the season.
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Figure 3.31 The estimated responses of Sales to (a) Price, (b) Promotion and (c)
Christmas, together with the frequency domain gain of (d) Price, (e) Promotion and
(f) Christmas.

There are many other factors, such as weather, that influence sales, result-
ing in much variability that is not accounted for by the chosen explanatory
variables. We can derive the residual contrasts from the frequency domain re-
gression and reconstitute the corresponding residual series which estimates the
noise term nt in the lagged relationship (3.23). This is the discrepancy between
the Sales series and the part explained by the Price, Promotion and Christmas
effect. Its estimated spectrum and autocorrelations can also be constructed.
Figure 3.32(a) shows the Sales series corrected for linear trend together with
this series of discrepancies, which confirms that there is much variability for
which the model fails to account. The estimated autocorrelations of these dis-
crepancies in Figure 3.32(b) decay over a period of two months. The model
assumes time invariance for its coefficients, which may in fact vary from year
to year. Other possible sources of variability of the discrepancy series may be
suggested by its inspection. But even without further investigation, this anal-
ysis has provided a useful summary of the effects of the explanatory variables
over the period of the data.
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Figure 3.32 (a) The discrepancy between the Sales series and the model (thick line)
together with the mean and trend corrected Sales (thin line), and (b) the estimated
autocorrelations of the discrepancy.

An alternative to trend correction of the series is to use their (mean cor-
rected) first differences in the analysis. The differencing must be applied to all
the series to preserve the dynamic relationship between them. In large samples
the estimated coherency, gain, phase and lagged responses are insensitive to
this transformation; the differencing will, however, carry through to the dis-
crepancy series. In this example, this alternative leads to very similar results.
Whether trend correction or differencing is used, low frequency information
is reduced, resulting in greater uncertainty in the estimation of the zero fre-
quency gain that is of particular interest. This is unavoidable if we do not
wish to risk distorting the estimated dependence of a trending series upon a
trending explanatory variable, because of the omission of unknown trending
factors which may also be part of the explanation.

3.10.7 Limitations of spectral analysis

Because spectral analysis is a form of non-parametric estimation, it has been
thought necessary that the time series to which it is applied should be of a
good length. However, as for other applications of non-parametric estimation,
much depends on whether the spectrum has pronounced features which it is
important to resolve, or if it is simple in form. In the latter case, spectral
analysis might be usefully applied to series with length as low as 20, in which
the dependence extends over a small number of lags.

Spectral analysis relies strongly on the assumption that the series are sta-
tionary. If applied to series in which the structure of lagged dependence is
changing, it may fail to determine a significant relationship, or if it does,
it will estimate some form of average dependence. This may be the case in
the foregoing Sales example, where the impact of Promotions may change
throughout the year. Similarly for the Moth count series, in the winter months
when moth numbers are low, the effects of the weather may be quite different.
Time varying spectral estimation may be carried out by applying the analy-
sis to a moving window of the series. The graphic equalizer on much audio
equipment shows the varying sound spectrum in different frequency bands.
The topic of evolutionary spectra has been studied for many years (see, for
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example, Priestley (1965), Priestley (1981, Chap. 11) and Dahlhaus (1996)),
but estimation of spectra is typically restricted to long, high-frequency sam-
pled series. Wavelet analysis (Percival and Walden (2006)) is also used to
analyze time-varying relationships. A recent practical approach to testing for
second order stationarity and estimating local second order properties using
wavelets is found in Nason (2013).

The description non-stationary is also applied to time series which are
integrated stationary processes. Our approach to series which may be of this
form has been to correct them for any regular trend but otherwise to apply
the same spectral analysis as for stationary series. Evidence of integrated
non-stationarity may be apparent in a spectral peak of very high power at
frequency zero, though in a finite sample it is not possible to discriminate
with certainty between an integrated process and a stationary process with
red spectrum. Pre-whitening, possibly even in the form of differencing, may
then improve the analysis. In practice, the estimates of lagged responses may
not be greatly affected by this, as may be verified for the Sales series example.

In our examples we have also corrected series for fixed periodic annual and
weekly cycles. This is not the same as applying a seasonal adjustment filter,
which corrects further for slow variations in the seasonal pattern from year to
year. Our correction removes harmonic components at the seasonal harmonic
frequencies, corresponding to cycles with periods equal to the seasonal period
or a simple fraction of that period. Seasonal adjustment also reduces the am-
plitude of harmonic components in the neighborhood of the seasonal harmonic
frequencies. These may contain useful information about the relationship be-
tween the series. For example, if there is a trend to warmer summers, the
moth trappings may increase correspondingly, but seasonal adjustment may
remove this evidence. Many economic time series are seasonally adjusted, and
the spectral estimation of their dependence may be adversely affected by this.

Spectral analysis is also directed at estimating linear lagged relationships.
We determined a significant lagged response between variables of the Film
extrusion process example, but this system almost certainly contains non-
linearities. These may not be large provided the variables do not depart far
from their set point, and the linear relationships we identified may be sufficient
to design successful control schemes.

Overall, spectral analysis is useful for demonstrating and quantifying linear
dependence between time series. It is often of value for specifying the form
of a linear parametric model for this dependence; this model may then be
developed to allow for time variation and non-linearity if these features are
found to be important. We refer again to Priestley (1981, Chap. 11) for models
that may be considered in this context.

3.11 Harmonic contrasts in large samples

In the preceding sections we have presented the distributional properties of
estimates of spectral quantities which are applicable in large samples. This


